本文目录一览:
- 1、什么是渗透测试服务?这个介绍的真详细
- 2、在对一个网站进行渗透测试时要用到哪些工具
- 3、python能做什么
- 4、Python渗透测试工具都有哪些
- 5、如何使用python根据接口文档进行接口测试
什么是渗透测试服务?这个介绍的真详细
渗透测试是通过模拟恶意黑客的攻击方法,来评估计算机网络系统安全的一种评估方法。这个过程包括对系统的任何弱点、技术缺陷或漏洞的主动分析,这个分析是从一个攻击者可能存在的位置来进行的,并且从这个位置有条件主动利用安全漏洞。
专业服务
渗透测试有时是作为外部审查的一部分而进行的。这种测试需要探查系统,以发现操作系统和任何网络服务,并检查这些网络服务有无漏洞。你可以用漏洞扫描器完成这些任务,但往往专业人士用的是不同的工具,而且他们比较熟悉这类替代性工具。
渗透测试的作用一方面在于,解释所用工具在探查过程中所得到的结果。只要手头有漏洞扫描器,谁都可以利用这种工具探查防火墙或者是网络的某些部分。但很少有人能全面地了解漏洞扫描器得到的结果,更别提另外进行测试,并证实漏洞扫描器所得报告的准确性了。
在对一个网站进行渗透测试时要用到哪些工具
要做网站渗透测试,首先我们要明白以下几点:
1、什么叫渗透测试?
渗透测试最简单直接的解释就是:完全站在攻击者角度对目标系统进行的安全性测试过程。
2、进行渗透测试的目的?
了解当前系统的安全性、了解攻击者可能利用的途径。它能够让管理人员非常直观的了解当前系统所面临的问题。
3、渗透测试是否等同于风险评估?
不是,你可以暂时理解成渗透测试属于风险评估的一部分。事实上,风险评估远比渗透测试复杂的多,它除渗透测试外还要加上资产识别,风险分析,除此之外,也还包括了人工审查以及后期的优化部分。
4、渗透测试是否就是黑盒测试?
否,很多技术人员对这个问题都存在这个错误的理解。渗透测试不只是要模拟外部黑客的入侵,同时,防止内部人员的有意识(无意识)攻击也是很有必要的。
5、渗透测试涉及哪些内容?
技术层面主要包括网络设备,主机,数据库,应用系统。另外可以考虑加入社会工程学(入侵的艺术/THE ART OF INTRUSION)。
6、渗透测试有哪些不足之处?
主要是投入高,风险高。而且必须是专业的网络安全团队(或公司,像网堤安全)才能相信输出的最终结果。
看完以上内容,相信大家已经明白渗透测试是不能光靠工具的,还要有专业的人员才行。推荐还是选择专攻网络安全这一块的公司或团队进行。
python能做什么
python的用途:
Python的优势有必要作为第一步去了解,Python作为面向对象的脚本语言,优势就是数据处理和挖掘,这也注定了它和AI、互联网技术的紧密联系。
网络爬虫。顾名思义,从互联网上爬取信息的脚本,主要由urllib、requests等库编写,实用性很强,小编就曾写过爬取5w数据量的爬虫。在大数据风靡的时代,爬虫绝对是新秀。
人工智能。AI使Python一战成名,AI的实现可以通过tensorflow库。神经网络的核心在于激活函数、损失函数和数据,数据可以通过爬虫获得。训练时大量的数据运算又是Python的show time。
扩展资料:
Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。在某些对运行速度要求很高的情况,Python设计师倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。
Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。
Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。
参考资料来源:百度百科-Python
Python渗透测试工具都有哪些
网络
Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包。可用作交互式包处理程序或单独作为一个库
pypcap, Pcapy, pylibpcap: 几个不同 libpcap 捆绑的python库
libdnet: 低级网络路由,包括端口查看和以太网帧的转发
dpkt: 快速,轻量数据包创建和分析,面向基本的 TCP/IP 协议
Impacket: 伪造和解码网络数据包,支持高级协议如 NMB 和 SMB
pynids: libnids 封装提供网络嗅探,IP 包碎片重组,TCP 流重组和端口扫描侦查
Dirtbags py-pcap: 无需 libpcap 库支持读取 pcap 文件
flowgrep: 通过正则表达式查找数据包中的 Payloads
Knock Subdomain Scan: 通过字典枚举目标子域名
SubBrute: 快速的子域名枚举工具
Mallory: 可扩展的 TCP/UDP 中间人代理工具,可以实时修改非标准协议
Pytbull: 灵活的 IDS/IPS 测试框架(附带超过300个测试样例)
调试和逆向工程
Paimei: 逆向工程框架,包含PyDBG, PIDA , pGRAPH
Immunity Debugger: 脚本 GUI 和命令行调试器
mona.py: Immunity Debugger 中的扩展,用于代替 pvefindaddr
IDAPython: IDA pro 中的插件,集成 Python 编程语言,允许脚本在 IDA Pro 中执行
PyEMU: 全脚本实现的英特尔32位仿真器,用于恶意软件分析
pefile: 读取并处理 PE 文件
pydasm: Python 封装的libdasm
PyDbgEng: Python 封装的微软 Windows 调试引擎
uhooker: 截获 DLL 或内存中任意地址可执行文件的 API 调用
diStorm: AMD64 下的反汇编库
python-ptrace: Python 写的使用 ptrace 的调试器
vdb/vtrace: vtrace 是用 Python 实现的跨平台调试 API, vdb 是使用它的调试器
Androguard: 安卓应用程序的逆向分析工具
Capstone: 一个轻量级的多平台多架构支持的反汇编框架。支持包括ARM,ARM64,MIPS和x86/x64平台
PyBFD: GNU 二进制文件描述(BFD)库的 Python 接口
Fuzzing
Sulley: 一个模糊器开发和模糊测试的框架,由多个可扩展的构件组成的
Peach Fuzzing Platform: 可扩展的模糊测试框架(v2版本 是用 Python 语言编写的)
antiparser: 模糊测试和故障注入的 API
TAOF: (The Art of Fuzzing, 模糊的艺术)包含 ProxyFuzz, 一个中间人网络模糊测试工具
untidy: 针对 XML 模糊测试工具
Powerfuzzer: 高度自动化和可完全定制的 Web 模糊测试工具
SMUDGE: 纯 Python 实现的网络协议模糊测试
Mistress: 基于预设模式,侦测实时文件格式和侦测畸形数据中的协议
Fuzzbox: 媒体多编码器的模糊测试
Forensic Fuzzing Tools: 通过生成模糊测试用的文件,文件系统和包含模糊测试文件的文件系统,来测试取证工具的鲁棒性
Windows IPC Fuzzing Tools: 使用 Windows 进程间通信机制进行模糊测试的工具
WSBang: 基于 Web 服务自动化测试 SOAP 安全性
Construct: 用于解析和构建数据格式(二进制或文本)的库
fuzzer.py(feliam): 由 Felipe Andres Manzano 编写的简单模糊测试工具
Fusil: 用于编写模糊测试程序的 Python 库
Web
Requests: 优雅,简单,人性化的 HTTP 库
HTTPie: 人性化的类似 cURL 命令行的 HTTP 客户端
ProxMon: 处理代理日志和报告发现的问题
WSMap: 寻找 Web 服务器和发现文件
Twill: 从命令行界面浏览网页。支持自动化网络测试
Ghost.py: Python 写的 WebKit Web 客户端
Windmill: Web 测试工具帮助你轻松实现自动化调试 Web 应用
FunkLoad: Web 功能和负载测试
spynner: Python 写的 Web浏览模块支持 Javascript/AJAX
python-spidermonkey: 是 Mozilla JS 引擎在 Python 上的移植,允许调用 Javascript 脚本和函数
mitmproxy: 支持 SSL 的 HTTP 代理。可以在控制台接口实时检查和编辑网络流量
pathod/pathoc: 变态的 HTTP/S 守护进程,用于测试和折磨 HTTP 客户端
如何使用python根据接口文档进行接口测试
1,关于requests
requests是python的一个http客户端库,设计的非常简单,专门为简化http测试写的。
2,开发环境
mac下面搭建开发环境非常方便。
sudo easy_install pip
sudo pip install requests
测试下:python命令行
import requests
r = requests.get('', auth=('user', 'pass'))
r.status_code
200
r.headers['content-type']
'application/json; charset=utf8'
r.encoding
'utf-8'
r.text
u'{type:User...'
r.json()
{u'private_gists': 419, u'total_private_repos': 77, ...}
开发工具,之前使用sublime,发现运行报错,不识别table字符。
IndentationError: unindent does not match any outer indentation level
非常抓狂的错误,根本找不到代码哪里有问题了。甚至开始怀疑人生了。
python的这个空格区分代码真的非常让人抓狂。开始怀念有大括号,分号的语言了。
彻底解决办法,直接换个IDE工具。使用牛刀,IDA开发。
直接下载社区版本即可,因为就是写个脚本啥的,没有用到太复杂的框架。
果然效果非常好,直接格式下代码,和java的一样好使,可以运行可以debug。右键直接运行成功。
3,测试接口
没有啥太复杂的,直接使用requests框架即可。
#!/usr/bin/python
# -*- coding: utf-8 -*-
################
import requests
#测试百度
def baidu_func(url):
headers = {}
params = {}
req = requests.post(url, headers=headers, params=params)
print(req.text)
if __name__ == '__main__':
url =
baidu_func(url)
4,总结
测试非常重要,尤其是对外的接口出现的漏洞,需要花时间去仔细测试,同时要仔细分析代码。
安全是挺重要的事情,要花时间去琢磨。
python学习还是非常容易学习的,一个小时就能把语法学会。
同时渗透测试,安全扫描的好多工具也是python写的。PyCharm CE版本的开发工具足够强大,能够帮你快速学习python。
如果想快速做点界面的开发,wxPython是非常不错的选择。